
TM-1240
2311.000

EPICS SYSTEM: RSX IMPLEMENTATICN ISSUES*

T. E. Lahey, J. F. Bartlett, J. S. Bobbitt, B. J. Kramper,
B. A. MacKinnon, and R. E. West

February 1984

*Submitted for publication in the Proceedings of the Digital
Equipment Computer User Society, Las Vegas, Nevada,October 1983.

EPICS SXSTM: RSX I,EPLE??EJTATIO!i ISSUES

T. E. Lshey
J. Frederick Bartlett, J. S. Bobbitt, B. J. Krmper

B. A. KacKinnon, R. E. West
Femi National Accelerator Laboratory

Batavia, Illinois

ABSTRACF

This paper presents implemntation details of the
Experimental Physic3 Interactive Control Syetem (EPICS).
EPICS is used to control accelerated particle beams for
high-energy physic3 experiments at the Fermi Rational
Accelerator Laboratory. The tapics discussed are :
interprocessor connauaication, support of beamline terminals
aud devices, resource management, napping, various problems.
some .aolutions to the problems, performance neaouremeat, and
modifications and extensfo3s to RSX-11EI.

This paper is the third of three related papera on the
EPICS ayaten. The other two cover (1) the sqtea overviev~
and (2) the system structure and user interface.

INTRODUCTION

EPICS is implemented with RSXllH running an
PD?-11'3.

The hardware configuration (figure 1) includes tvo
closely-coupled PDP-11'3: an 11/44 and an 11/34.
The ll/44 is a level-2 computer that runs the user
coxmnd language, utilities, and the device
database. The 11134 is a level-3 computer that
resds and writes beerzline devices and creates an
interrupt environment for the level-2 computer. The
computers are coupled with shared memory and a
DRll -C intermpt link. The shared memory is located
03 a shared UUIBUS. Also located on this shared
UBIBUS are the aerial CARAC controller and TIMER
controller.

The serial CAHAC controller is a special-purpose
controller providing access to serial CANAC. The
CAUC system runs throughout the experimental areaa
and supports modules for interfacing to beanline
devices, terminala, and experimenter computers. The
CAWtC systen does not provide asynchronous demands,
30 the level-3 poll3 all CAMAC modules. The serial
CAXAC controller reads conmands from and stores.data
i3 shared nsmory.

The TIKER is a second special-purpose controller
that synchronizes the level-2 and level-3 computers
to the external accelerator clock. The accelerator
clock generates timing pulses that announce events,
such as the atart of an accelerator cycle and
delivery of beam to the experiments. The TI14ER
re3ides on the prinary UNIBUS of the level-3
computer. The CA&G controller and TIMER ar%
level-4 computers.

prdings of the Digital Equ@ment Computer Users Society 229

Currently, the level-2 conputer run3 RSX-?1K and the
level-3 computer 17108 a stripped-down version of
RSX-11X that ie equivalent to RSX-11s. A separate
ai3m03tiO aysten for the EPICS hardware run3
RSX-11s on both cosputema. The level-3 conputer has
110 disk. It is dounloaded from the level-2 computer
by using the DR11-C, ahared memory, axid the 1 t/34
boo’t ROM.

8
62M6

rl lima

Fig. 1 EPICS Rardware Configuration V

Las Vegas, Nevada - Umber, 1983

I.YTER!'ROCESSOR COXX8NICATIOI

The DRll-C and shared memLy are used for
interprocessor coimunication. There at= three
partitions in shared me%org: one owned by the
level-2 cooputer, o;1e owned by the level-3 conputer,
and one containing comnunicatiou queues. The
initisticg task creates a message in shared memory,
and sends it to another task via a comunication
queue. Tie initiating task enters fork state and
calls a coauunication routine to enqueue the message
on a coomuuicatipn queue. When the receiving task
is on the s9=Le processor, the communication handler
enqueues the message ou the proper queue. When the
receiving taak is on the other processor, the
commmication haadler sends the address of the
message, via the DRll-C, to the other processor.
The conmnication handler on the target processor
euqueues the message on the proper queue. If E task
owns the cosuunication queue, the comunication
handler informs the task about the arrival of a
aesea~e by setting an. event flag or issuing an
Aspchmnous System Triip (AST). The receiving task
calls a routine to dequeue the message. The DRll-C
A ana LI lntermpts are supported vith cosuect to
interrupt routines (GIRTS) in au RSX task.

.BEAELIBE'TERMINALS SUPPORT

Piguts 2 shows the path through the system for
access to a tersiual. The user command language
(CBASIC) and the utility tasks issue QIO's that are
supported wLth a ninimal driver and the Terminal
Ancillary Co?ltrol Processor (ACP) . The ACP
comuaicates with the level-3 terminal handler via
ahared-memory messages and cotxnunication queues.
These messages are input and output lines. The
level-3 teminal handler performs low-level
processing, e.g. , local-echoing and intra-line
editing, and schedules polling of the terminals that
are physically connected via serial CANAC.

BEARLINE DLYICE SUPPORT

Figure 3 showa the path through the system for
access to beamline devices. The utility tasks and
CBA3IG issue 410’s that are supported with a minimal
drive? and the Request Formatter ACP. The Request
Fom3a:ter cosilnicates with the Disk Database Access
task, and uaes the memory-resident device database
to perform iaitial processing on the device access
request. The Request Fomatter sends the request to
the level-3 Request Handler via conxmnication queues
snd shared nemory. This task converts the request
into a command list and sends the command list to
the serial CAXAC driver for execution on the serial
CAUC aysten. Upon completion, the level-3 computer
processes the data and sends it up to the utility
task via the Request Formatter.

Utilities

Utilities are nonprivileged RSX tasks that typically
erccuts QIO’s to create a device access request,
transfer a data buffer, and delete the device access
request. An exception to this is the Page utility
which is
updstes

a nonprivileged task that repetitively
EUXIY device readings 03 multiple terminals.

There can be e naximrr of 8 page displays with 45
device readings each. Page updates up to 24 of
these readings every second, optionally updates
another 24 devicee readings every 0.2 seconds, and
modifies the page displays in response to user
CO2ztnd3 .

. CSASIC
7

*

i

mk
I

CONTROLLER - -’

I

2 Support for Peamline Terminals

Fig. 3 Support for Beamline Devices

230

-4-

its device recotd is placed at tha end of ths LRU
list. On the next accssa to the device, the Request
Bomattor hashes the device record, finds it on the
LRU list, resiovss it, and atatta using tbs device
tscord without invoking DDL uhan ne* device
records era beirtg loaded, DIM retrieves th3
least-recmtly-used record from the front of the LRU
list and uses it for the new device. Al.1 devices
that are uo longer baing accessed are thus
sveatually teaoved fro9 the database COZIUO~.

haother area of resoqce manageaaot is sharing of
data when two Or mar8 tea& requests are identical
with rsspsct to the devise, attribute, and time.
The EPICS system uaea a data structure in shared
memory called the shared data point. The level-3
cosputer stores the data in the shared data point
vh8r8 the data is accessible by all proceasss that
get data directZy from shared rrenrory. For exanple,
the Page utility retrieves the aaua data IOr all
us8re vhich Bra displaying .tha device. In addition,
the level-3 cOmput8r distributes this data to all
buifsrs fqr utilities that are ratrieving t’ns data
in buffers. This nechanias’ gives us iswar data
atX3ZChIre3 in 8har8d r~8mor3, ?Wer accgaa8s to the
dWfC8, and fewer execbitfons OS routines that
~rOc899 that data.

R889UrC% nSnSg3iU8nt i8 applied t0 b8aZ?ilia8 t8Z?IiIiTlal
support. Oa the level-3 computer, there are two
polling rate3: slow aud fast, Uhen no one is using
8 terniual, it is polled at the slow rate of once
per second. When a user type9 the first character,
the level-3 conputar starts polling the terizinal at
the fast poll rate of 10 tin89 pel' 88COXld. Thera iS
a tiueout of diva minutes agrpliid to fast pollitig of
a terminal. If a uaer has not typed within thi9
time p8riOd, the level-3 computer polls the terminal
at the slow polling intenfal.

R88Ourc8 naYlag83aat is implaseated via the concepts
O? deffned terminals and active teminals. A
defined temiual is on8 which has been idehfified to
the EPICS'syste% and which is polled by the level-3
computer. An active teninal is a teninal known to
RSX through an assi$ned Unit Control, Block (UCB),
yhen a user types at a dafiued tarniaal, the
Temfnal ACP atterrpta to assign tha terninol ta 8
teminal UCB, naking it an active terminal. This
technique requires fewer UCB'a in pool and hence
saves pool. Thhsre is also a timeout Of active
terminals. If there ia no activity on an active
teniual, it 58 dfSCOnn8Ct8a fron the UCB, 80 that
the active tenainal port can be used for another
definsd teminal. This tineout and the number of
acttve telmrinals allows us to aupport the naximB
aumber of concurrent users without excessive use Of
POOL At the current time there are 24 defined
terminals, 10 active telninals. and a timeout of 15
nfMte3 On 8CtiV8 t iWdll&h

The level-2 utilities inplemsnt resource management
via ~ineouts and r@source quota% For elasple, the
Database Editor cancsls aa editing s8asfoa if a user
has typed no comnanaa vithin Its timeout period.
Pa58 cancels 8 png8 display if it receives no
conmands rroa the user vithin its timout period.
The Watch utility applies quotas an utter requests.
Each type of user is given a maxinuu nuuber of Watch
resourcea that cab be used. For example, an .active
experiment can watch more devices than an inactive
one.

MAPPING

All tasks that accem the database comon and shared
oeaory m.l& d;ms;lically map to thoes atsf
Currantljr, the database corn09 is 16K worda h
shared ELIOT is 44X k-de.

The Disk Databasa Access task la a nonprtvile5ed
task that raps to the dotebsse con&on vis RSX PI&S
directives.

To dacreaae the ampping time 3.n many bther tasks,
the tasks nap directly. The tasks modify the
conteuts of ths napping APB's oa the I/O psae. For
a task to directly nodify its uapplng undar RSX, you
nust disable context svitching. At the next context
stitch, RSX will recalculate the valusa of the
nspping ragistsrs for the task. One sinple solution
is to -disable context svitching by nodiCyin~ the
varisblo SCXDBL. Fhen nonzero, tha executive vLl1
not svitch to running a diff8r8Dt task. So the task
disables COnteXt switching, remaps 8nd processes,
8Ra then raanablss context switching. The nsxt the
that RSX switches the'ta9k out aad bsck in, mapping
till be as descrlbsa iu the ninaoo blocks.

Ye are starting to us8 another method for remapping
a task. When huilaing the taak, ~9 allocat8

.additiOnsL ‘window block9 with standard RSX Task
Ruilder couanda. Wile the task is dng,'it
nodifiea tha contents 'of its window blocks to
ap3m.uy remap. This allows fast remapping and
task snitching vhile the task executes the section
of code in which it modifies napping.

PROBLERS

Rany of the technical problem that ue encounterad
vere ralated to uapping. There were also some
problena with RSX pool. A ninor problem was seen
vifh incorrect use of ~WSTKS.

Whea a task disables context snitchin for the
purpooe of nodifyiug the napping, the task carrot
iesua any RSX directive that leads to a context
switch. This caused ninor problems ralatea to
noraal use oi such directives: This caused uajor
prohlena relate3 to use of th8 OD'i d8b!J&ng tool
sime it issues such directives.

Another problen with d+sabl& context svitching is
that a task can monopolize the CPU. Additionally,
you reduce your ability to tune th8 ‘system with
standard RSX tuning Parantetars, such ag task
priority.

If you directly modify the napping *8gister3, never
lpodify ApX a, It is napped to your task header. At
minima, the Directive Status Uora (DS%) for your
task is stored in your task header. The system
coatiaues to update the location at the Off&t of
ts8 xiu into APR 0.

Aa-with u-y RSX-11N applications, we had typica
problem vith pool. Great care wa9 r8qUird to
achieve the larg8st possible pool. Other&se the-e
vas not enouyh pool, especially on the ieval-2
coaputsr. Additionally, when the amount af _
pool vas low, it became difficult or inPoesiba, ii
diagnose or solve the problem.

One ufnor problem vaa the use of a SUST'KS froo an
illegal APR. In a 2OK executive, RSX processes a
SUSECS by copying the user mapping registers 5 to 3

t:, t&? corresponding kernal mapping regisers. The
executive then transfers control to the code
Tollowing the SKYi’i(%. If this code is in APR 0
:hrough 4, the executive is not napped to your code,
9nd it will execute whatever is at that location in
the kernal address space.

SOLUTIONS

There are multiple solutions to the above problems,
.,ome of which first became available during the
,,evelopment of EPICS.

,'onversion from RSX-1lE to RSX-llM+ on the level-2
(:omputer may solve many problems, such as those with
pool. We will use multi-user tasks to reduce the
number of tasks and hence the amount of task
swapping. Use of Instruction and Data Space gives a
larger task address space and can reduce the amount
of dynamic mapping.

For dynamic mapping of a task's address space, we
are increasing the usage of window blocks allocated
by the Task Builder and modified directly at
execution time. Another possible solution to some
of our mapping problems is to use a VAX.

To use ODT for debugging a task that disables
context switching while it remaps, we added the
ability to preserve the mapping of one task across
task switches. When debugging a task, the task
identifies itself ss the task for which mapping is
preserved, and then remaps without disabling context
switching.

We can move the data structures associated with the
Request Formatter ACP from RSX pool to M+ secondary
pool or to another partition. Additionally, we are
moving all date structures that need not reside in
shared memory to other locations, thus using shared
memory only when required. More effective use of
this critical resource allows us to reduce
allocation restrictions and to extend the automatic
recovery timeouts.

For tne communication handler and TIEER handler, we
are converting to RSX drivers from the
connect-to-interrupt mechanism. This reduces the
time to handle en interrupt. Additionally, this
removes the context switch which oc.curs when these
devices are supported with an RSX task. The
privileged tasks will enter fork state and directly
queue commands to the drivers via the routine
SDRQRQ. Future code can be nonprivileged end access
the drivers vie QIO's.

Newer versions of the compiler have features that
allow us to write more code in PASCAL. This
provide9 for faster implementation and more
maintainable code. We currently have a

.stripped-down PASCAL run-time system that we will
use to write privileged code in PASCAL. For
example, new versions of the Terminal .4CP will be
coded in PASCAL.

We are considering a modification to the code which
supports SWSTK$, such that a PR:O task (privileged
without being mapped to the executive) can execute a
SWSTKO to enter fork state, provided the SWSTK$ code
is located in APR 5 or 6 for a 20K executive. We
will a190 check whether the task has executed the
SYSTiiI from a legal .4PR.

An improved method for support of critical sections
between the Disk Database Access task and Request
Formatter is the use of global event flaga. The
task priorities can then be set according to
relative processing priority of the tasks.

We are migrating the low-level terminal processing
from the level-3 computer to intelligent terminals.
This reduces the level-3 computer load and provides
better response to a user typing at the terminal.
In many cases, these terminals can be supported by a
local (level-5) computer, e.g., personal computer.
This method provides even more power to the user and
off-loads more functions from the level-2 end
level-3 computers.

PERFORMANCE EEASUREMENT

To iricrease the real-time response of the EPICS
system, ue measured performance in two ways.

The first method involves attaching a logic state
analyzer to the UWIBUS address liaes. 3y attaching
the analyzer to the primary UEIBUS of the 11/44 or
11/34, we ten obaerve relative execution of code on
that processor. By attaching the analyzer to the
shared UNIBUS, we can observe overall use of the
shared memory by the 11/44, 11/34, and serial CAMAC
controller.

A second method involves use of a DRli-C attached to
an oscilloscope via Fermilab equipment that
condition9 the DRll-C signals. An EPICS task or
driver sets end clears individual bits in the DRll-C
register to indicate its execution and its states.
The oscilloscope generates a trace of the reported
activity. We thus get a more detailed idea of
system activity and timing.

MODIFICATIONS AED EXTENSIONS OF RSX

To produce the implementation of EPICS that we have
described, we made minimal modification9 end
extensions to the executive.

Currently there are two modifications to the system.
First, the task switching code was changed to
preserve the mapping of a single task across context
switches. Second, we modified XDT on the:level-3
computer so that the system would reboot without an
operator-entered command, i.e., O command to XDT.

Additional functionality was supported by extensions
to the executive. During the- RSX system generation,
we added routines for allocation and dsallacation of
shared memory and for interprocessor communicatian.
At system reboot; the RSX illegal instruction code
is extended by loading code into pool and changing
the executive code to branch to the neV code. We
have programs to load and remove the illegal
instruction code whenever necessary.

As mentioned earlier, we will be modifying the
SWSTK$ code to allow its use from a privileged task
that is not mapped to the executive.

233

Many of the implementation techniques, such as the
use af &S'S, special-purpose drivers, and fast
execution of code are applicable to both RSX-I11 and
to RSX-11?1+. This discussion is useful for
time-critical RSX-flM applications on la-bit
machines. some of the methods we used in
implementing the EPICS control system can be avoided
by uss of RSX-llM+.

REFEREWES

1. Bartlett, J.F., et al., "The EPICS System: An
Overview", DECUS Proceedings, Fall 1983.

2. West, R.E., et al., "EPICS System: System
Structure and User Interface", DECKS Proceedings,
Fall 1983.

234

